首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4576篇
  免费   1197篇
  国内免费   679篇
化学   3741篇
晶体学   66篇
力学   209篇
综合类   28篇
数学   193篇
物理学   2215篇
  2024年   5篇
  2023年   55篇
  2022年   108篇
  2021年   177篇
  2020年   270篇
  2019年   192篇
  2018年   150篇
  2017年   180篇
  2016年   255篇
  2015年   241篇
  2014年   339篇
  2013年   426篇
  2012年   358篇
  2011年   336篇
  2010年   286篇
  2009年   297篇
  2008年   310篇
  2007年   284篇
  2006年   279篇
  2005年   249篇
  2004年   270篇
  2003年   208篇
  2002年   149篇
  2001年   117篇
  2000年   98篇
  1999年   104篇
  1998年   89篇
  1997年   85篇
  1996年   81篇
  1995年   70篇
  1994年   66篇
  1993年   48篇
  1992年   51篇
  1991年   34篇
  1990年   27篇
  1989年   24篇
  1988年   23篇
  1987年   14篇
  1986年   21篇
  1985年   8篇
  1984年   11篇
  1983年   3篇
  1982年   12篇
  1981年   7篇
  1980年   8篇
  1979年   10篇
  1977年   3篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
排序方式: 共有6452条查询结果,搜索用时 15 毫秒
41.
Molecular doping of conjugated polymers (CPs) plays a vital role in optimizing organic electronic and energy applications. For the case of organic thermoelectrics, it is commonly believed that doping CPs with a strong dopant could result in higher conductivity (σ) and thus better power factor (PF). Herein, by investigating thermoelectric performance of a polar side-chain bearing CP, poly(3-(methoxyethoxyethoxy)thiophene) (P3MEET), vapor doped with fluorinated-derivative of tetracyanoquinodimethane FnTCNQ (n = 1, 2, 4), we show that using strong dopants can in fact have detrimental effects on the thermoelectric performance of CPs. Despite possessing higher electron affinity, doping P3MEET with F4TCNQ only results in a σ (27.0 S/cm) comparable to samples doped with other two weaker dopants F2TCNQ and F1TCNQ (26.4 and 20.1 S/cm). Interestingly, F4TCNQ-doped samples display a marked reduction in the Seebeck coefficient (α) compared to F1TCNQ- and F2TCNQ-doped samples from 42 to 13 μV/K, leading to an undesirable suppression of the PF. Structural characterizations coupled with Kang-Snyder modeling of the α–σ relation show that the reduction of α in F4TCNQ-doped P3MEET samples originates from the generation of low mobility carrier within P3MEET's amorphous domain. Our results demonstrate that factors such as dopant distribution and doping efficiency within the crystalline and amorphous domains of CPs should play a crucial role in advancing rational design for organic thermoelectrics.  相似文献   
42.
Strong push-pull interactions between electron donor, diaminoazobenzene (azo), and an electron acceptor, perylenediimide (PDI), entities in the newly synthesized A−D−A type triads (A=electron acceptor and D=electron donor) and the corresponding A−D dyads are shown to reveal wide-band absorption covering the entire visible spectrum. Electrochemical studies revealed the facile reduction of PDI and relatively easier oxidation of diaminoazobenzene in the dyads and triads. Charge transfer reversal using fluorescence-spectroelectrochemistry wherein the PDI fluorescence recovery upon one-electron oxidation, deterring the charge-transfer interactions, was possible to accomplish. The charge transfer state density difference and the frontier orbitals from the DFT calculations established the electron-deficient PDI to be an electron acceptor and diaminoazobenzene to be an electron donor resulting in energetically closely positioned PDI δ− -Azo δ+ -PDI δ− quadrupolar charge-transfer states in the case of triads and Azo δ+ -PDI δ− dipolar charge-transfer states in the case of dyads. Subsequent femtosecond transient absorption spectral studies unequivocally proved the occurrence of excited-state charge transfer in these dyads and triads in benzonitrile wherein the calculated forward charge transfer rate constants, kf, were limited to instrument response factor, meaning >1012 s−1 revealing the occurrence of ultrafast photo-events. The charge recombination rate constant, kr, was found to depend on the type of donor-acceptor conjugates, that is, it was possible to establish faster kr in the case of triads (∼1011 s−1) compared to dyads (∼1010 s−1). Modulating both ground and excited-state properties of PDI with the help of strong quadrupolar and dipolar charge transfer and witnessing ultrafast charge transfer events in the studied triads and dyads is borne out from the present study.  相似文献   
43.
A new class of ruthenium(II) polypyridine complexes with a series of D–π–A–π–D type (D=donor, A=acceptor) ligands was synthesized and characterized by 1H NMR spectroscopy, mass spectrometry, and elemental analysis. The photophysical and electrochemical properties of the complexes were also investigated. The newly synthesized ruthenium(II) polypyridine complexes were found to exhibit two intense absorption bands at both high‐energy (λ=333–369 nm) and low‐energy (λ=520–535 nm) regions. They are assigned as intraligand (IL) π→π* transitions of the bipyridine (bpy) and π‐conjugated bpy ligands, and IL charge‐transfer (CT) transitions from the donor to the acceptor moiety with mixing of dπ(RuII)→π*(bpy) and dπ(RuII)→π*(L) MLCT characters, respectively. In addition, all complexes were demonstrated to exhibit intense red emissions at approximately λ=727–744 nm in degassed dichloromethane at 298 K or in n‐butyronitrile glass at 77 K. Nanosecond transient absorption (TA) spectroscopy has also been carried out, establishing the presence of the charge‐separated state. In order to understand the electrochemical properties of the complexes, cyclic voltammetry has also been performed. Two quasi‐reversible oxidation couples and three quasi‐reversible reduction couples were observed. One of the ruthenium(II) complexes has been utilized in the fabrication of memory devices, in which an ON/OFF current ratio of over 104 was obtained.  相似文献   
44.
I n this study, we successfully synthesized water/methanol soluble random copolymers with a high dielectric constant, poly(n‐(hydroxymethyl) acrylamide‐co‐5‐(9‐(5‐(diethylamino)pentyl)?2‐(4‐vinylphenyl)?9H‐fluorene(P(NMA‐co‐F6NSt)), which contained chemical crosslinkable segment (NMA) and hole trapping building block (F6NSt). The feeding molar ratios of two monomers (NMA:F6NSt) were set as 100:0, 95:5, 80:20, and 67:33 for the copolymers of P1 , P2 , P3, and P4 , respectively. The crosslinked P(NMA‐co‐F6NSt) thin film could serve as both dielectric and charge storage layers in organic field‐effect transistor (OFET) memory device and exhibited high k (i.e., 4.91–6.47) characteristics, leading to a low voltage operation and a small power consumption. Devices based on the P1 ‐ P4 dielectrics showed excellent insulating properties and good charge storage performance under a low operating voltage in a range of ±5V because of tightly network structures and well‐dispersed trapping cites. In particular, P3 ‐based memory device exhibited a large memory window of 4.13 V with stable data retention stability over 104 s, a large on/off ratio of 104, and good endurance characteristics as high as 200 cycles. The above results suggested that a high‐performance OFET memory device could be facilely achieved using the novel crosslinkable high‐k copolymers. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3224–3236  相似文献   
45.
Two conjugated copolymers PADT‐DPP and PADT‐FDPP based on anthradithiophene and diketopyrrolopyrrole, with thiophene and furan as the π‐conjugated bridge, respectively, were successfully synthesized and characterized. The number‐averaged molecular weights of the two polymers are 38.7 and 30.2 kg/mol, respectively. Polymers PADT‐DPP and PADT‐FDPP exhibit broad absorption bands and their optical band gaps are 1.44 and 1.50 eV, respectively. The highest occupied molecular orbital energy level of PADT‐DPP is located at ?5.03 eV while that of PADT‐FDPP is at ?5.16 eV. In field‐effect transistors, PADT‐DPP and PADT‐FDPP displayed hole mobilities of 4.7 × 10?3 and 2.7 × 10?3 cm2/(V s), respectively. In polymer solar cells, PADT‐DPP and PADT‐FDPP showed power conversion efficiency (PCE) of 3.44% and 0.29%, respectively. Atomic force microscopy revealed that the poor efficiency of PADT‐FDPP should be related to the large two‐phase separation in its active layer. If 1,8‐diiodooctane (DIO) was used as the solvent additive, the PCE of PADT‐DPP remained almost unchanged due to very limited morphology variation. However, the addition of DIO could remarkably elevate the PCE of PADT‐FDPP to 2.62% because of the greatly improved morphology. Our results suggest that the anthradithiophene as an electron‐donating polycyclic system is useful to construct new D–A alternating copolymers for efficient polymer solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1652–1661  相似文献   
46.
47.
48.
To shed light on intramolecular charge‐transfer phenomena in 1,2,3‐triazole‐linked materials, a series of 1,2,3‐triazole‐linked push–pull chromophores were prepared and studied experimentally and computationally. Investigated modifications include variation of donor and/or acceptor strength and linker moiety as well as regioisomers. Photophysical characterization of intramolecular charge‐transfer features revealed ambipolar behavior of the triazole linker, depending on the substitution position. Furthermore, non‐centrosymmetric materials were subjected to second‐harmonic generation measurements, which revealed the high nonlinear optical activity of this class of materials.  相似文献   
49.
50.
Density functional theory calculations suggest that β‐turn peptide segments can act as a novel dual‐relay elements to facilitate long‐range charge hopping transport in proteins, with the N terminus relaying electron hopping transfer and the C terminus relaying hole hopping migration. The electron‐ or hole‐binding ability of such a β‐turn is subject to the conformations of oligopeptides and lengths of its linking strands. On the one hand, strand extension at the C‐terminal end of a β‐turn considerably enhances the electron‐binding of the β‐turn N terminus, due to its unique electropositivity in the macro‐dipole, but does not enhance hole‐forming of the β‐turn C terminus because of competition from other sites within the β‐strand. On the other hand, strand extension at the N terminal end of the β‐turn greatly enhances hole‐binding of the β‐turn C terminus, due to its distinct electronegativity in the macro‐dipole, but does not considerably enhance electron‐binding ability of the N terminus because of the shared responsibility of other sites in the β‐strand. Thus, in the β‐hairpin structures, electron‐ or hole‐binding abilities of both termini of the β‐turn motif degenerate compared with those of the two hook structures, due to the decreased macro‐dipole polarity caused by the extending the two terminal strands. In general, the high polarity of a macro‐dipole always plays a principal role in determining charge‐relay properties through modifying the components and energies of the highest occupied and lowest unoccupied molecular orbitals of the β‐turn motif, whereas local dipoles with low polarity only play a cooperative assisting role. Further exploration is needed to identify other factors that influence relay properties in these protein motifs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号